A CONVENIENT FAMILY OF CHIRAL SHIFT REAGENTS FOR MEASUREMENT OF ENANTIOMERIC EXCESSES OF SULFOXIDES

M.DESHMUKH, E.DUNACH, S.JUGE and H.B.KAGAN

Laboratoire de Synthèse Asymétrique (associé au CNRS LA n°255) Université Paris-Sud, 91405 ORSAY, France

Abstract

 $(R)(-)-N-(3,5-dinitrobenzoyl)-\alpha-phenylethylamine is a good chiral shift reagent for sulfoxides such as Ar-(SO)-CH₃ (Ar=substituted phenyl,naphthyl) or R-(SO)-CH₃ (R=t-Bu,Cyclohexyl,n-Octyl). 1-Naphthyl propyl³ sulfoxide was also successfully resolved. The sharpness of the signals allows to measure e.e.'s in the range of 90%. Twenty-five examples are given.$

Chiral sulfoxides are taken increasing importance in organic synthesis¹⁻³. However, in many cases the maximum specific rotation of these compounds is unknown. Chromatographic methods using chiral phases are efficient^{4,5}, but they usually need an aromatic group as part of the sulfoxide structure.Optically active solvents⁶ or lanthanide chiral shift reagents are very useful in nmr analysis, particularly Eu(hfc)₃ where hfc stands for (<u>n</u>-heptafluoropropyl)hydroxymethylene-d-camphorato⁷⁻⁹. This reagent applies to various kinds of sulfoxides but there is often peak broadening and incomplete separation and it is difficult to accurately measure high enantiomeric excesses (0.90% e.e.). Recently, we discover an efficient method of asymmetric oxidation of sulfides of wide applicability¹⁰, and we were faced to measure e.e. of various sulfoxides, many of them not previously resolved. We found that (R)-(-)-N-(3,5-dinitrobenzoyl)- α -phenylathylamine1 acts a chiral shift reagent in nmr when used in CDCl₃ or CCl₄.

Both enantiomers of the reagent are easily obtained from commercially available starting material,(R) or (S)- α -phenylethylamine.Thus (+)-1-phenylethylamine (Fluka) is quantitatively acylated by 3,5-dinitrobenzoylchloride in CHCl₃ in presence of pyridine and <u>1</u> is obtained in 90% yield, $(\alpha)_{D}^{20} = -17.5^{\circ}$ (0.9,acetone),mp = 158-160°C) after a filtration (ether) on neutral alumina.When the commercial starting material is not optically pure it is necessary to recrystallize the product till constant specific rotation.

(R)- $\underline{2a}$ ((α) $_{D}^{20}$ = + 9.2° (2,EtOH),mp = 228°C) was also prepared,as well as the amides $\underline{2b}$, $\underline{2c}$ and C₆H₅CH(CH₃)NHCOR (R=CH₃,CF₃)¹¹.

Preliminary essays using racemic methyl phenyl sulfoxide (0.15 M) and 2 equivalents of $\underline{2}$ in CDCl₃ show in ¹H nmr (100 MHz) a non equivalence of the methyl sulfinyl groups. The peak separations expressed in Hz) are 1.5, 2.3, 3.2 for $\underline{2b}, \underline{2c}$ and $\underline{2a}$ respectively with the clear advantage of an almost no enlargement of the peaks compared with the one observed when europium complexes are used. We selected the amides with the dinitrophenyl moiety as the best for the chiral shift reagents. We found that $\underline{1}$ is easier to use than the naphthyl analogs $\underline{2}$ because of its better solubility. $\underline{1}$ gives satisfactory results in CDCl₃ using one molar equivalent amount per equivalent of sulfoxide. If it is necessary to increase the peak separation, more reagent can be further added (see note h in Ta-

ble 1).The standard conditions for enantiomer analysis are the following : the sulfoxide is dissolved in CDCl $_3$ (0.10-0.30 M), ne equivalent of reagent is added and 1 H nmr is recorded.Some results are listed in Table 1.Examples of spectra are indicated in figures 1-4.

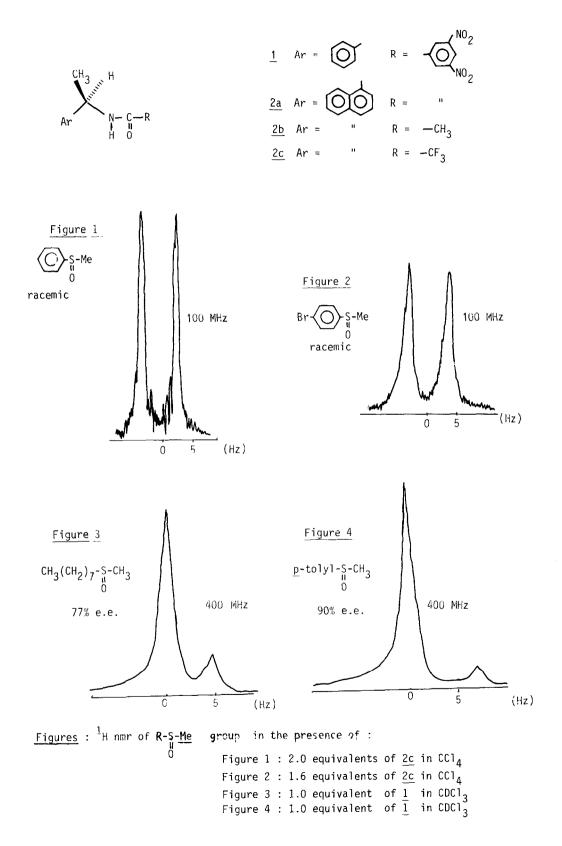
The method tolerates many functional groups and applies very well to various kinds of methyl sulfoxides.The only cases with no peak separation were methyl-4-pyridyl sulfoxide and p-(CO₂Et)phenyl methyl sulfoxide.The methyl group is useful but not indispensable,thus 2-naphthyl-n-propyl sulfoxide could be analyzed by separation of the proton at C_1 on the naphthalene ring. When possible it is better to use CCl₄ as solvent, thus racemic methyl <u>p</u>-tolyl sulfoxide and (+)- $\frac{2c}{2c}$ (1:1) gave a methyl peak separation at 100 MHz of 2.3 Hz in CDCl_3 and of 5.4 Hz in CCl_4 .No separation was obtained in CD₂CN.

Eu(hfc)₃ gave poor peak separation for many of the sulfoxides tried, especially in the cases with high e.e. where accurate measurements were difficult.In some cases (methyl-4-nitrophenyl sulfoxide,methyl-4-pyridyl sulfoxide,methyl-2-pyridyl sulfoxide,..) no separation at all was observed with $Eu(hfc)_3$ because of the enlargement of the peaks¹².

The origin of the non equivalence between sulfoxide enantiomers with 1 or 2 presumably lies in the formation of complexes because of hydrogen bonds between the sulfinyl and the NH groups.Charge transfer could also operate to some extent¹³.

In conclusion, 1 is a simple and inexpensive chiral shift reagent for routine enantiomeric analysis of many sulfoxides¹⁴.

Acknowledgments


We thank CNRS for its financial support.

References and Notes

- G.Solladie, Synthesis, 1981, 185 and references quoted therein.
 H.G.Posner, J.P.Mallamo, K.Miura, M.Hulle in "Asymmetric Reactions and Processes in chemistry", ACS Symposium Series, Washington 1982.
 (3) M.Mikolajczyk, J.Drabowicz, Topics in Stereochem., 1982, 13, 333.
 (4) W.H.Pirkle, D.W.House, J.Org.Chem., 1979, 44, 1957.
 (5) W.H.Pirkle, J.M.Finn, B.C.Hamper, J.Schreiner, J.R.Pribish, in "Asymmetric Reactions and Weblick Provide Control Machineton 1983.

- Processes in Chemistry", ACS Symposium Series, Washington 1982, p.245. (6) W.H.Pirkle, S.D.Beare, J.Am.Chem.Soc., <u>1968</u>, 90, 6250. (7) R.R.Fraser, M.A.Petit, J.K.Saunders, J.C.S.Chem.Commun., <u>1971</u>, 1450.

- (8) F.A.Davis, J.M.Billmers, J.Org.Chem., 1983, 48, 2672 ; F.A.Davis et al., J.Am.Chem.Soc., <u>1982, 104, 5412.</u>
- (9) T.Takata, M.Yamazaki, K.Fumijori, Y.H.Kim, T.Iyanagi, S.Oae, Bull.Chem.Soc.Jap., 1983, 56, 2300.
- (10) P.Pitchen, H.B.Kagan, Tetrahedron Lett., 1984, 1049.
- (11) No interference of the reagents $\underline{1}$ or $\underline{2}$ with the absorption of the methyl sulfinyl group is observed in nmr.
- (12) Eu(hfc)₃ (Aldrich) was used as received.
- (13) For aromatic sulfoxides the chiral recognition model could be similar to the one proposed for HPLC enantiomers separation where the chiral phase is based on the N-3,5-dinitrobenzoylphenyl glycine moiety⁵.
- (14) A preliminary screening was undertaken with other families of substrates able to bind by hydrogen bond. Nmr spectra of racemic 2-octanol or 2-methylcyclohexanone were not resolved by addition of 1.1t was found that racemic $CH_3CH(N_3)CON(CH_3)_2$ gives in CCl_4 four signals for N-methyl groups and two doublets for CH_3 -CH. The non equivalencies (at 100 MHz) are respectively of 9 Hz and 2.5 Hz when two equivalents of 1 are used. The same shift reagent also differentiates the two antipodes of racemic N-acetyl- α -phenylethylamine $(AS = 11.3 \text{ Hz} \text{ or } CH_4$ $(\Delta \delta = 11.3 \text{ Hz on } CH_3(CH)).$

Enantiomeric excesses of sulfoxides $R_1^{-(SO)-R_2}$ measured by ¹H nmr, with <u>1</u> or <u>2</u> as chiral shift reagents^a.

R ₁	^R 2	Chiral reagent	∆δ(Hz) ^C	Δ _{1/2} (H _z) ^c	$(\alpha)_{D}(acetone)$	e.e. (%)
p-tolyl	Ме	1 ^b	6.5	1.3	+ 131°	90
p-nitrophenyl	Me	<u>1</u> b	4.4	1.6	+ 77.1°	77
p-CH ₂ OH phenyl	Me	<u>1</u> b	5.7	1.3	+ 77°	76
p-OH phenyl	Ме	<u>1</u> ^b	8.1	1.8	+ 45°	50
2-pyridyl	Ме	<u>1</u> ^b	9.5 ^e	5.5	+ 34°	57
n ^{-C} 8 ^H 17	Me	<u>1</u> ^b	4.4	1.4	- 44°	71
t-Bu	Me	<u>1</u> ^b	5.3	1.0	- 15°	53
 ^C 6 ^H 12	Ме	1 ^b	5.2	2.6	- 44.5°	54
Ph(CH ₂) ₃	Me	Γ ^Δ 1 ^Δ	4.4	1.4	- 29°	50
^{2-C} 10 ^H 7	Me	1 ^b	4.7 ^d	1.6	+ 120°	85
^{2-C} 10 ^H 7	Me		10.0	1.8	+ 127°	90
^{2-C} 10 ^H 7	<u>n</u> -Pr	1 ^b	5.7	4.4	+ 40°	24
p-tolyl	Me	1 ^{i,j}	5.0	1.3	+ 128°	88
p-tolyl	Me	1 ^k	7.0	1.3	+ 128°	88
_ phenyl	Me	$\frac{2a}{2a}f,h$ $\frac{2b}{2c}f,h$ $\frac{2c}{2c}f,h$	3.2	-	0	0
u.	Ме	2b ^{f,h}	1.5	-	0	0
н	Me	2c ^{f,h}	2.3	-	0	0
н	Me	$\frac{\frac{2c}{2c}^{g}}{\frac{2c}{2c}^{f}}$	7.7	-	0	0
p-tolyl	Ме	2c ^f	2.3	-	0	0
	Me	2c ^g	5.4	-	0	0
p-bromophenyl	Me.	2a ^g	2.4	-	0	0
8	Me	2c ^{g,i}	6.1	-	0	0
benzyl	Me	2c ^{g,1}	4.6	-	0	0
ethy]	Me	<u>2c</u> g <u>2c</u> g,i	5.7	-	0	0
n-propyl	Me	20 ^g ,i	6	-	0	0

a) One mol equivalent unless stated.

b) Measurement at 400MHz in CDCl₃, $(R_1 - (SO) - R_2) = 0.10 - 0.30$ M.

c) $\Delta\delta(Hz)$ is the separation between the signals of two enantiomers. The major peak is at lower field. $\Delta_{1/2}(Hz)$ is the width at half height for the signal of the major enantiomer.

d) 0.5 mol equivalent of reagent

e) In $CDC1_3 + 10\% CC1_4$

- f) Measurement at 100MHz in CDCl_3
- g) Measurement at 100MHz in CCl₄
- h) 2 mol equivalent of reagent
- i) 1.6 mol equivalent of reagent
- j) Measurement at 250MHz in \mbox{CDCl}_3
- k) Measurement at 250MHz in $CC1_4$
- (Received in France 23 April 1984)